On a Waring-Goldbach type problem for fourth powers

نویسندگان

  • Xiumin Ren
  • Kai-Man Tsang
چکیده

In this paper, we prove that every sufficiently large positive integer satisfying some necessary congruence conditions can be represented by the sum of a fourth power of integer and twelve fourth powers of prime numbers. MSC: 11P05, 11P32, 11P55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linnik ’ s approximation to Goldbach ’ s conjecture , and other problems

We examine the problem of writing every sufficiently large even number as the sum of two primes and at most K powers of 2. We outline an approach that only just falls short of improving the current bounds on K. Finally, we improve the estimates in other Waring–Goldbach problems.

متن کامل

On Sums of Powers of Almost Equal Primes

We investigate the Waring-Goldbach problem of representing a positive integer n as the sum of s kth powers of almost equal prime numbers. Define sk = 2k(k − 1) when k > 3, and put s2 = 6. In addition, put θ2 = 19 24 , θ3 = 4 5 and θk = 5 6 (k > 4). Suppose that n satisfies the necessary congruence conditions, and put X = (n/s). We show that whenever s > sk and ε > 0, and n is sufficiently large...

متن کامل

On the Waring–goldbach Problem: Exceptional Sets for Sums of Cubes and Higher Powers

(1.1) p1 + · · ·+ ps = n, where p1, . . . , ps are prime unknowns. It is conjectured that for any pair of integers k, s ∈ N with s ≥ k + 1 there exist a fixed modulus qk,s and a collection Nk,s of congruence classes mod qk,s such that (1.1) is solvable for all sufficiently large n ∈ Nk,s. While a proof of this conjecture appears to be beyond the reach of present methods, some significant progre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004